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Any complex system of first order reactions connecting various chemical species may 
be uncoupled into an equivalent system of simple independent first order irreversible 
reactions of “characteristic” species. This mode of analysis provides a method’for the 
determination of the effects of intraparticle diffusion on systems of first order reactions of 
arbitrary complexity. For isothermal systems obeying Fick’s law of diffusion, the reaction 
rates in the presence of diffusion still remain linear functions of the concentrations 
ambient to the catalyst particles. Hence, in a kinetic experiment where the particle radii 
and the diffusivities remain constant, the experimental data will always appear to come 
from a consistent set of first order rate constants although they do not represent the 
proper rate constants for the chemical process. The method of analysis used also leads to 
good criteria for estimating whether diffusion effects can be neglected in a given system 
of reactions when either the rate constants or the rates of reaction are known. It also 
provides the transient solution when the diffusivities of the various species are equal so 
one may estimate the length of time required for a system to reach steady state. This is 
important for some systems, especially in the liquid phase, where hours may elapse 
before steady state is reached. 

INTRODUCTION It has been shown recently by Wei and 
Eecent investigators, notably Thiele (I), Prater (6) that, from both a mathematical 

Wheeler (2), Weisz and Prater (S), Weiss and an experimental standpoint, any com- 
and Swegler (4), and Danckwerts (5) have plex system of first order reactions may be 
shown how intraparticle diffusion of react- uncoupled (except for certain trivial cases) 
ants and products within porous catalyst into a set of independent first order irreversi- 
particles may modify greatly the behavior of ble reactions; hence one may consider such 
such systems. These investigations have a complex system as a set of simple, inde- 
been restricted, however, to simple reac- pendent systems. This may be illustrated 
tions consisting of, at most, two consecutive, by the three-component system of Fig. 1 
irreversible steps; Thiele, Wheeler, and where A; is the ith molecular species, and 
Weisz and Prater discuss such simple sys- Bi is the ith characteristic species in the 
terns under steady state conditions, and equivalent set of uncoupled, independent 
Danckwerts discusses these systems with reactions. The symbol k<j designates the 
the steady state condition removed. It will first order rate constant for the reaction from 
be the purpose of this paper to discuss the the species Aj to the species Ai, and Xi is 
behavior of systems of coupled first order the rate constant for the irreversible decay 
reactions of arbitrary complexity, for both of the characteristic species Bi. The species 
steady state and transient conditions, in B, is the equilibrium species and does not 
the presence of intraparticle diffusion effects. change with time. The remainder of the 
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B, does nat change 

B,, xp, 0 

8, -% 0 

FIG. 1. The equivalence of coupled and uncoupled reaction systems. 

characteristic species, Bz and B3, may be 
interpreted, physically, as “transference 
units,” i.e., as special linear, fixed combina- 
tions of molecular species that react as 
packaged units. They are conceptually 
similar to the normal modes in vibration 
analysis and to wave functions in quantum 
mechanical systems. 

Each of the species, Bz and BS, is related 
to a straight line reaction path as illustrated 
in Fig. 2. These straight line reactions paths, 

FIG. 2. The straight line reaction paths. 

B’2, B’s, are used as a set of oblique coordi- 
nate axes to represent any composition as 
shown in Fig. 3. The point P is a mixture of 
al parts of the molecular species Al, a2 
parts of AS, and a3 parts of As; it may also 
be considered to be a mixture of bl parts of 
the equilibrium species B1, 62 parts of the 

FIG. 3. The straight line reaction paths aa 
oblique coordinate axes. 

characteristic species B2, and b3 parts of the 
characteristic species Ba. The full justifica- 
tion for, and treatment of, this method has 
been given by Wei and Prater (6). 

A similar transformation may also be used 
to obtain the solution for systems of first 
order reactions in the presence of intrapar- 
title diffusion effects that obey Fick’s law of 
diffusion, In the characteristic or B system 
of species, each species satisfies a simple 
and independent differential equation for 
diffusion with an irreversible sink. Thus, the 
problem may be solved by transforming to 
the B system of species, solving the set of 
independent differential equations obtained, 
and then transforming the results back to 
the molecular or A system of species. 
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II. THEOVER-ALLSTEADYSTATEREACTION 
RATE OF A SINGLE PARTICLE 

A. General Discussion 

1. The Equation for the System and the 
Concept of Uncoupling 

Let us consider a complex system of first 
order reactions involving n molecular species 
Ai and occurring within a porous catalyst 
particle. At a point represented by the vector 
I within the catalyst particle, the local reac- 
tion i\ate for the species Ai is determined, in 
terms of the local concentrations aj(r) of the 
various species Ai, by 

n 

2 
’ [kijaj(r) - kj&(r)] 

j=l 

Again the symbol kij designates the first 
order rate constant (many of which may be 
zero) for the reaction from species Aj to the 
species Ai. Since there are no rate constants 
of the form kii, the prime on the summation 
sign is used to signify that the index j goes 
from 1 to n skipping i. On the other hand, 
the rate of supply of the species Ai to the 
point r is given by Div2ai(r) if the diffusivity 
Di is independent of the concentration; this 
is true in the Knudsen range and is often 
a sufficiently good approximation for the 
gaseous diffusion range. When steady state 
conditions exist at the point r, the reaction 
rate for the species Ai must equal its rate 
of supply by diffusion. Hence, for each 
species A;, one has 

-D;v*a;(r) = 2’ [kipj(r) - kjiai(r)] (1) 
j=l 

There are n of these equations and all of 
them may be written simultaneously as a 
single equation by using matrix notation; 

Dv*a(r) = Ka(r) (2) 

In Eq. (2), a is the composition vector with 
elements given by al, a2, . . . , a,, and 
written as a column matrix. In general, each 
of the elements may freely assume a value 
of zero or a positive number. The domain 
of values that the vector a may assume con- 
stitutes the composition space, and it has n 

dimensions--one for each species Ai. In 
Eq. (2), D is the diagonal matrix 

(D1 0 . * * 0 

I0 y : : : p 
I : . . . . . 

I . 
. . . . . 

0 0 . . . D, 

and K is the matrix 

. . 

-k,, -krra -ha . ’ I Pk. 
i ‘“J 

Multiplying Eq. (2) by the inverse matrix 
D-l, one obtains 

v*a(r) = D-lIZa (3) 

Let the ambient concentrations, a(R), be 
uniform over the boundary of the particle. 
Using Eq. (3), one wishes to determine the 
over-all reaction rate for the whole particle 
expressed in terms of these ambient con- 
centrations. It will be shown that even in 
a diffusion-controlled process, one can for- 
mally express the over-all rate of the reac- 
tion as in = -Kta(R) where Kt is a dif- 
fusion-disguised over-all rate matrix. We 
shall show now how K+ is related to D and 
K. 

Let us compare Eq. (3) with the equation 
studied by Wei and Prater (6) for the reac- 
tion rates of systems in which the diffusion 
transport of reactants is unimportant. In 
the latter formulation, solutions are sought 
for the matrix equation 

d[a(t)]/dt = -Ka(t) (4) 

This equation gives the movement of the 
composition vector a(t) in the composition 
space. Wei and Prater (6) show that a trans- 
formation, which changes Eq. (4) into the 
equation 

d[b(t)]/dt = -ah(t) (5) 

can be determined from the measured equi- 
librium composition and the location of the 
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straight line reaction paths. In Eq. (5), the 
vector b(t) is the composition vector ex- 
pressed in terms of the characteristic species 
and A is a diagonal matrix with elements 
that are nonnegative (zero or positive) real 
numbers; these elements are the rate con- 
stants for the B system of species. The 
transformation changes the highly coupled 
system of molecular species into the equiva- 
lent uncoupled system of characteristic 
species B; as given above and represents an 
extensive simplification of the problem. The 
transformation gives the relations 

and 
A = X-1KX (6) 

b(t) = X-la(t) (7) 
where X is the matrix formed by the charac- 
teristic vectors of the matrix K, and X-i 
is the inverse of the matrix X. The trans- 
formation matrix X may be determined 
experimentally from the equilibrium com- 
position and the location of straight line 
reaction paths in composition space. Equa- 
tion (6) shows that the rate constants, Xi, 
for the B system of species, which form the 
diagonal elements of the matrix A, are the 
characteristic values of the matrix K. 

It will be shown that Eq. (3) can be trans- 
formed in an analogous manner into the 
equation 

Vb(r) = @b(r) (8) 
where the matrix Q, is again a diagonal 
matrix with elements that are nonnegative 
real numbers; this also transforms the 
coupled system into an uncoupled system 
of characteristic species and again the prob- 
lem is greatly simplified. Using the solutions 
obtained by means of the transformation, 
the over-all reaction rates are obtained from 
the fluxes of the reactants across the bound- 
ary of the particle. These fluxes will be shown 
to be linear functions of the ambient con- 
centrations such that the over-all rate of 
reaction of the species Ai per unit volume of 
catalyst is Z’i-l[kij+aj(R) - kji+ai(R)]. The 
constants, k<j+, are the diffusion-disguised 
rate constants and are functions only of the 
intrinsic rate constants kij, the diffusivities 
Di, and the particle geometry; they are 
independent of the ambient concentrations. 

2. A Constraint on the System 

Before presenting the details of the trans- 
formation of Eq. (3) into Eq. (S), let us 
examine an important constraint that arises 
in these systems. For systems of first order 
reactions in the absence of diffusion effects, 
the quantity Ziai(t) is invariant with time. 
This quantity, which derives from the law 
of conservation of mass, is an important 
constraint for these systems (6). For an 
n-component system, it restricts the move- 
ment of the end of the composition vector 
a(t) to an (n - 1)-dimensional “plane” in 
the n-dimensional composition space. An 
example of such a “plane” is shown in Fig. 2 
for a three component system; the reaction 
paths show the movements of the ends of the 
composition vectors in this plane. Let us 
examine the nature of the corresponding 
invariant with respect to the space variable 
r for systems in which diffusion transport 
is important. The law of conservation of 
mass requires that the total rate of reaction 
be zero at any point r. On the other hand, 
the steady state condition requires that the 
diffusion transport of each species Ai exactly 
balances the rate of reaction of. this species. 
Hence, summing Eq. (1) over all species 
Ai and applying the condition that the sum 
of all rates is equal to zero at any point, one 
obtains 

V2 ZiDiai(r) = 0 (9) 

for all values of r. Let the concentrations 
oj(R), which corresponds to the ambient 
concentrations, be constant over the bound- 
ary of the particle. Then one obtains the 
result that 

&Diai(r) = Zi Diai(R) (10) 
since any quantity that obeys Laplace’s 
equation and has a constant value over the 
boundary has this same constant value 
throughout the region of space enclosed by 
the boundary (7). 

If the diffusivities, Di, are not functions 
of the concentrations, and therefore also 
not of position, the quantity 2,czi(r) cannot 
be invariant with respect to the space 
variable unless the diffusivities of all species 
are equal. This means that, for reactions 
in the gaseous phase, the total pressure can- 
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not be constant throughout the particle and 
must be a function of r. In the Knudsen 
range of diffusivities, one gaseous molecule 
seldom collides with another gaseous mole- 
cule, and the pressure at any point need not 
equal the ambient pressure. 

The constraint, ZiDiai = constant, con- 
fines the composition vector a to an (n - l)- 
dimensional subspace of the n-dimensional 
composition space and therefore reduces 
the dimensions of the problem. In some 
cases, for example for the system A1 e AZ -+ 
Aa, the constraint reduces the dimension of 
the problem sufficiently so that explicit solu- 
tions can be obtained by ordinary methods. 

3. The Properties oj the Characteristic Values 

Let us begin the detailed discussion of 
Eq. (3) by showing that the matrix D-X 
has only real nonnegative characteristic 
values. Let A* be the diagonal matrix whose 
diagonal elements are the equilibrium values 
aI*, az*, . . . ) and a,* of the components 
A1, Ae, . . . , and A,. The principle of 
microscopic reversibility requires the matrix 
KA* to be symmetric (6). Using the matrices 
[(A*)-lD]“” and [(A*)-1D]-1’2 to make a 
similarity transformation on the matrix 
D-‘K, one obtains 

= [A*D]-1’2[KA*][A*D]-1’2 (11) 

since the diagonal matrices A* and D com- 
mute so that (A*D)lj2 = (A*)1’2D1’2. Since 
KA” is a symmetric matrix, one has 

[(A*D)-““(KA*) (A*D)-1’2]* 
= (A*D)-l’z(KA*) (A*D)-1’2 (12) 

where T signifies the transpose. The matrix 
given by the right side of Eq. (11) is equal 
to its transpose and is therefore symmetric; 
hence the matrix given by the left side of 
Eq. (11) is also symmetric. Since the matrix 
D-‘K is similar to a symmetric matrix, it 
can have only real characteristic values (8). 
The similarity relation 

D-X - (A*D)-1’2(KA*) (A*D)-“2 

may also be used to show that the charac- 
teristic values of the matrix D-‘K are non- 
negative numbers. Wei and Rater (6) give 
proof that the matrix KA* has nonnegative 

characteristic values. Then the matrix 
Q’(KA*) Q must also have only nonnegative 
characteristic values since it is a positive 
quadratic form for any matrix Q. Hence, 
the matrix (A*D)-l/2(KA*) (A*D)-l/2, and 
consequently, the matrix D-‘K can have 
only real nonnegative characteristic values. 

4. The Transformation 

Let us now examine the details of the 
transformation of Eq. (3) into Eq. (8). Let 
Y be the matrix formed from the character- 
istic vectors of the matrix D-‘K. Then, 

# = Y-‘D-1KY (13) 

where CP is a diagonal matrix whose elements 
are the real characteristic values of the 
matrix D-‘K. Thus, 

D-‘K = YsY-’ (14) 

The substitution of Eq. (14) into Eq. (3) 
gives 

v2a(r) = YmY-la(r) (15) 

The multiplication of Eq. (15) from the left 
by Y-l gives 

v2Y-la(r) = *Y-la(r) (1’3) 

since the matrix Y-l is constant and may 
be moved to the right of the operator v2. Let 

b(r) = Y-la(r) (17) 

then Eq. (16) becomes 

v2b(r) = @b(r) (18) 
which is identical with Eq. (8). Since the 
matrix Q, is diagonal, Eq. (18) is equivalent 
to the set of n independent scalar equations 
of the form 

v2bj(r) = +jbj(r) (19) 
Equation (19) is the differential equation 
for diffusion in the presence of a sink that is 
a single first order irreversible reaction. 
Hence, the steady state solution for the 
problem of complex systems of first order 
reactions with diffusion transport can be 
obtained for any geometry for which the 
solution of Eq. (19) is known. The remainder 
of this discussion will be confined to diffusion 
in a spherical particle since other geometries 
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for which the solution of Eq. (19) is known forming the characteristic system of species 
may be obtained in an analogous manner. into the molecular system of species by the 

B. The Solution for a Spherical Particle 
use of the transformation given by Eq. (17) 
and multiplying from the left by the matrix 

For a spherical particle, it will be con- Y, one obtains 
venient to define a new diagonal matrix 
with nonnegative elements such that $. ab>IR 

CD = (l/R)ZlQe” cw = (l/R)Y(q coth Q - I>YPa(R) (25) 

i.e., such that the elements pj of the matrix Hence, the rate of reaction per unit volume 
9 are given by of catalyst is given by 

Pj = (+ V$)R (21) 

As for the matrix K in systems of first order -bHZD f a(r& 
c J 

reactions in which diffusion effects are 
. 

negligible, the matrix D-‘K has one charac- 
4/3&3 

teristic value equal to zero; this corresponds 
= -(3,‘&)DY(e cothe - I)Y-la(R) (26) 

to the equilibrium species which does not Following the notation of Weisz and Prater 
react and therefore has no diffusion effect (S), one defines the diagonal matrices n and 
associated with it. Each of the other charac- tl so that 
teristic species has its own parameter cpj 
analogous to R(+ l/lc/L)) for the simple n = 39-‘(9 coth Q - I) (27) 
irreversible reactions studied by other in- and 

vestigators (1-S). Furthermore, each charac- 8 = G&I = 3& coth Q - I) (28) 
teristic species will have its own effectiveness 
factor qli analogous to the corresponding The elements qi of the matrix n are dimen- 

quantity as defined for the simple systems. sionless quantities that give’ the fractional 

The solution for the scalar Eq. (19) for a reduction, caused by diffusion transport, of 

spherical geometry is the rate of reaction of the ith characteristic 
species Bi. In Eq. (27), the matrix CQ-~ is a 
diagonal matrix with diagonal elements 
given by (0, l/&, . . . , 1/vn2j. Although 

Thus we see from Eq. (17) that the concen- 
the matrix $ is singular and has no proper 

tration profile of any species, ai( is a 
inverse, it is often convenient to define a 

sum of terms of the form of Eq. (22). The 
generalized inverse as given by &’ [see for 

total reaction rate for a single particle can 
example ref. (S)]. The rate of reaction per 

now be evaluated by computing the total 
unit volume of catalyst in the presence of 

flux across the boundary of the particle from 
diffusion effects is then given by 

the gradient of bj(r) evaluated at the bound- iD = - (1/R2)DY~*nY-‘a(R) (29) 
ary R. The gradient at Ez is given by = - (l/P)DYeY-‘a(R) (30) 

f bj(r)lK = (l/‘R)(qj coth pj - l)bj(R)p 
= -K+a(R) (31) 

j = 1 to 11, (23) 
where 

The set of n equations given by (23) may K+ = (l/R*)DYeY-’ = X+li+(X+)-’ (32) 
be written as a single matrix equation; The matrix K+ is the diffusiondisguised, 

g b(r>lR = (l/R)& coth 9 - I)b(W 
over-all rate constant matrix based on the 

(24) ambient concentrations a(R); the matrices 
X+ and A+ are the diffusion-disguised matri- 

where I is the identity matrix, and coth Q is ces of characteristic vectors and rate con- 
a diagonal matrix with diagonal elements stants, respectively. The matrix X+ is deter- 
[coth cpi, coth cpz, . . . , coth (~~1. Trans- mined experimentally from the equilibrium 
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composition and the location of the straight 
line reaction paths, and the matrix At is 
determined by the rate of reaction of each 
characteristic species. Equation (32) shows 
that the matrix Kt depends only on the in- 
trinsic rate constants kii and the diffusivities 
Di and not on the ambient concentrations. 

If Eq. (32) is multiplied from the left by 
the matrix D-l, one obtains 

D-‘Kt = (l/&)YeY-’ (33) 

Hence, the matrices D-‘K and D-‘K+ have 
the same characteristic vectors but digerent 
characteristic values-namely, g2/RZ and 
0/R2, respectively. 

Three sets of characteristic vectors have 
been introduced : 

S) 

(2) 

(3) 

The set X is associated with the intrinsic 
rate matrix K, and is related to the 
straight line reaction paths when diffu- 
sion effects are negligible. 
The set Y is associated with the matrices 
D-‘K and D-‘It+, and is related to the 
concentration profile inside the particle. 
The set Xt is associated with the diffu- 
sion-disguised rate matrix Kf, and is 
related to the straight line reaction paths 
for the entire particle when diffusion 
effects are appreciable. The diffusion- 
disguised rate matrix K+ is reduced to 
the true rate matrix K when Di/R” 
approaches infinity for all i. 

The set of characteristic vectors given by the 
matrix X+ are the ones directly measured in 
the laboratory and the sets given by Y and 
X are calculated using Xt. But, if the dif- 
fusivities, D,, for all the molecular species 
are equal, the matrix D-l reduces to a scalar 
quantity, l/D, and a great, simplification 
takes place since X+ = Y = X. In this 
case, the following equations replace the 
more complicated Eqs. (20) and (32): 

CQ~ = (R2/D)h (204 
and 

K+ = XAnX-1 (324 

When the matrices K+ and D have been 
measured, the matrix K can be computed. 
By combining Eqs. (28), (20a), and (32a), 
one obtains the diagonal matrix 

6 = (D/R2)X-‘K+X = 3& coth Q- I) 

WE1 

The value of each 8i can be calculated from 
a knowledge of Kt and D. The value of each 
pi is then calculated by the equation 

ei = 3@; coth (pi - 1) 

Then one solves for each Xi by the equation 

Xi = DQZ/R~ 

Then one obtains K = XAX-1. 
Let us compare the matrix Eq. (32) with 

with the corresponding expression for a 
single irreversible reaction. which is given by 

kt = kq = (3k/Q2)(Q coth Q - 1) 
= (D/R2)(p2v = (D/R2)0 (34) 

This suggests a general alternate formula- 
tion that more closely resembles the formula- 
tion for the simple irreversible system. 
Instead of defining the matrix $ to be a 
diagonal matrix, one rnay define the non- 
diagonal matrix 

92 s R2D-1K (35) 

The matrix K is singular and does not 
possess a proper inverse. Nevertheless, one 
may define, as before, a generalized inverse 
given by 

K-1 = u-lx-1 (36) 

where A-’ is the diagonal matrix with diag- 
onal elements [0, l/X2, . . . , l/X,]. In this 
case, one may define the nondiagonal matrix 
ii 

ii = 3~-~(, coth G - I) (37) 

where coth (e is a matrix function of the 
matrix 5 (7’). Then, the diffusion-disguised 
rat)e constant matrix is 

Kt = Kii 

This formulation is more compact, and the 
matrices K, 5, and ii are handled in a manner 
that is almost identical to that of their 
scalar counterparts k-, cp, and q. 

C. Criteria jar the Presence of Appreciable 
Di$usion E$ects in Complex Systems 

oj First Order Reactions 
In Spherical Particles 

1. A Criterion Based on Rate Constan,ts 

Let the elements of the matrix 9 be ar- 
ranged in order so that Ql = 0 6 Q2 < pa 6 
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. . . < , (P,,. The extent of the diffusion effect 
qj, for each characteristic species Bj is given 
by the elements of the matrix Eq. (27), 
which are functions of vi; the smallest value 
of 7 is obtained when (03 is (P,,. Thus any 
criterion that gives an upper limit for the 
characteristic values of the matrix D-‘K 
will give an estimate of the lower limit for 
qn and hence an estimate for the extent of 
the diffusion effect on the most sensitive 
characteristic species of the matrix D-‘K. 
An upper limit for the characteristic values 
may be obtained from the criterion 

(cp,/R)2 6 maximum over i of 
Zj' (kij + kji)/Di (33) 

This says, that for each species Ai, the values 
of all the rate constants leading towards 
and away from the species Ai are summed 
and then divided by the diffusivity of Ai. 
There are n such numbers, one for each 
molecular species; the value of ((o,JZQ2 is 
less than or equal to the largest of these n 
numbers. In most cases, this estimate will 
be a pessimistic over-estimate of the upper 
limit. Where the diffusivities of the species 
are widely different, the following criterion 
may yield a smaller value: 

In any case the value of ((p,/R)2 must be 
less than or equal to the smaller of the two 
estimates. Since the characteristic species 
behave as completely uncoupled reactants, 
the value of (Pi for which diffusion effects 
become negligible is identical with the 
results obtained with a simple irreversible 
system involving a single molecular species. 
Thus, if (Pi 6 1, diffusion effects may be 
neglected [see for example Weisz and 
Prater, ref. (S)]. 

As an example let us examine the reaction 
system 

with diffusivities D, = 5, D2 = 2, and 

D3 = 4. Equation (38) gives for each of 
the three species Ai 

A,: (10 + 5 + 20 + 5)/5 = 8 
Az: (10 + 5 + 1 + 2)/Z = 9 
Aa: (20 + 5 + 1 + 2)/4 = 7 

On the other hand, Eq. (39) gives 

(10 + 20)/5 + (5 + 2)/2 + (1 + 5)/4 = 11 

Thus the value of (P,/R)~ is less than or 
equal to 9; the correct value is actually 7.8. 

The rate constant matrix determined in 
the laboratory is the matrix K+ and it is 
this matrix that must, in most cases, be 
used to test for the presence of significant 
diffusion effects. The characteristic values 
of the matrix D-‘K+ are Oj/R2 and correspond 
to the same system of characteristic species 
as obtained with the matrix D-‘K. Further- 
more they are ordered in exactly the same 
way as the elements of the matrix 9, that 
is, the characteristic value corresponding to 
the characteristic species B, is the largest 
and will give a criterion for estimating the 
extent of diffusion effect for the most sensi- 
tive species. A modification of Eqs. (38) 
and (39) may be used in which (pn2/R2 is 
replaced by 0,/R” and the rate constants 
kij are replaced by the rate constants kijt. 
A criterion for negligible diffusion effects 
in a simple irreversible reaction system with 
a single species is given by Weisz and Prater 
(3) to be that 0 < 1. This same criterion 
can be used to test whether the matrix K+ is 
a good approximation of ,the matrix K. 

2. A Criterion Based on 
Measured Reaction Rates 

The quantity t9 was defined by Weisz and 
Prater (3) for a single step in order to formu- 
late a diffusion criterion in terms of observed 
rates of reaction instead of in terms of ob- 
served rate constants. Let us examine this 
formulation. Consider the rate equation 

da/dt = kt(a - a*) (40) 

This gives 

k+ = (da/dt)/(a - a*) (41) 

The quantity 6 is defined by Weisz and 
Prater to be 



534 JAMES 

e = (R”/D>k+ = (R2/D)[(da/dt)/(a - a*)] 

(42) 

and the criterion is 

e = (R2/D)[(da/cR)/(a - a*)] 6 1 (43) 

For multicomponent systems this criterion 
needs modification, This may be seen from 
the following example: In general, during 
the course of a reaction, the amount oi may 
become equal to ai* even though the reac- 
tion rate dai/dt is not zero (ai overshoots 
the equilibrium value ai*). Hence the 
criterion can become infinite even though 
there may be no significant diffusion effects 
whatsoever. 

Let us establish a criterion, based on ob- 
served rates of reaction instead of on ob- 
served rate constants, that is more broadly 
applicable to systems of coupled first order 
reactions. The transformation that changes 
the characteristic species, arising from the 
matrix D-‘Kt, into the molecular species is 
given by 

a = Yb = ZjbjYj (44) 

where Yj is the jth characteristic vector 
which forms the jth column of the trans- 
formation matrix Y. Let us define the norm 
of the vector a to be 

181 = da’(A*)-IDa = &Jl,tQ/ai* (45) 

Since 

Yi’(A*)-lDYi = 60 (46) 

where 6ij is the Kronecker delta, the norm 
defined above is the length of the compoei- 
tion vector in the characteristic system of 
coordinates of the matrix D-lKt; 

]a] = 4Zx (47) 

The norm of the vector [D-l(da/&)] is given 

by 

ID-‘(da/&) I = 

d[D-l(da/dt)]‘(A*)-lDID-l(da/dt)] (48) 

WE1 

D-‘Kt = Y(e/R2)Y-1 (50) 

Hence, 

jD-l(da/dt)I = IY(e/P)bl = 
~bT(e/Rz)[YT(A*)-1DY](e/R2)b (51) 

Using the relation 

YT(A*)-‘DY = I 

the norm becomes 

jD-l(da/Lldt)I = dbT(e2/R4)b 
= d&(bi&/R2)2 (52) 

The inequality 

~~i(bi~i/R2)2 6 dzi(e,&i/R2)2 

< (&,,/R2) 4zibiZ (53) 

must hold; hence the relation 

ID-l(da/dt)I = ,/zi($(~)2 < (emaw/R2) 

(54) 

is obtained. Therefore, by using the defini- 
tion of the norm given in Eq. (45), the 
criterion for negligible diffusion effects 
becomes 

When all diffusivities are equal, it becomes 

e 
R2 

Bvg = - D 
Zi(dai/atJ2jai* < I (56) 

Z\;Cii’/a;* ’ 

When the amounts, ai*, are all equal, it 
becomes 

e 
h2 

avg = - D u’ Zi(.i(2~ti” 6 1 

%a, 
(57) 

AS an example let us examine the reaction 
among the species Al, AZ, and A, with the 
following characteristics: the observed rates 
are -1 X low3 set-‘, 0.5 X 1O-3 set-l, and 

But 0.5 X 10e3 se@, respectively; the diffusivi- 

ID-l(da/dt)I = ID-‘Ktaj = (Y(e/R2)Y-la1 ties are 2 X 10P3, 1 X 10m3, and 1 X 10e3 

= ]Y(e/R2)b] (49) cm2/sec, respectively; the equilibrium mole 
fractions are 0.25,0.25; and 0.5, respectively; 

since the mole fractions of reactants are 1, 0, and 
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0, respectively. The criterion given by Eq. 
(55) becomes 

e aw = 82. 

[(1)*/(2 X 0.25)1 + [(0.5)*/(1 X 0.25)] 
+ [(0.5Y/(l x 0.511 

2 X (1)*/0.25 
= 0.66R2 

Thus, if the radius of the sphere is 0.2 cm, 
e Byg = 0.0264 and diffusion effects are neg- 
ligible; but if the radius is 2 cm, 8,,, = 2.64 
and diffusion effects are not negligible. 

III. THE TRANSIENT SOLUTION FOR A 
SPHERICAL PARTICLE FOR 

EQUAL DIFFUSIVITIES 

Let us assume that the ambient concen- 
trations do not change with time and that 
the concentrations in the interior of the 
particle are initially zero. Solutions are then 
sought for the differential equation 

a/at[a(r,t)] - Dv*a(r,t) + Ka(r,t) = 0 (58) 

In general the solution for this equation is 
not available since one cannot simultane- 
ously diagonalize the matrices D and K. 
If all the diffusivities are equal, however, 
the matrix D reduces to a scalar constant 
and one obtains 

a/at[a(r,t)] - Dv*a(r,t) + Ka(r,t) = 0 (59) 

The transformations given by Eqs. (6) and 
(7) are used to convert Eq. (59) into the 
equation 

a/at[b(r,t)] - L)v2b(r,t) + nb(r,t) = 0 (60) 

Since the matrix A is diagonal, Eq. (60) is 
equivalent to the set of n independent scalar 
equations of the form 

C’/dt[bi(~,t)] - DV2bj(r,t) + Xjb(r,t) = 0 (61) 

Once again, the highly coupled set of equa- 
tions given by the matrix Eq. (59) is reduced 
to a set of simple equations that can be 
solved individually. Thus, as for the steady 
state solution, the known solution for a 
simple irreversible sink involving a single 
molecular species [Danckwerts (5)] may be 
used for the complex system if the diffusivi- 
ties of the various molecular species are 
equal. This solution is 

bj(T,t) = bjo 
+2 c 

(- l)“(nr) sin (m-r/R) x 
n=l (pi” + Cnr>” T 

exp - [(pj* + (nn>*l7 
> (44) 

where bj” is the ambient concentration of 
the characteristic species Bj and T = Dt/R*. 

The gpproach to steady state conditions 
may be conveniently indexed by the param- 
eter fj(pj,T), which is defined as the total 
concentration in the sphere divided by the 
total steady state concentration in the 
sphere; i.e., 

fj(pj,r) E r Pbj(r,s)dr/f r*bj(T, m)dr (63) 

The value of .&(r,~), as determined from 
Eq. (62), is given by 

5i(W) = 1 - m 
6 c exp - [Cpj” + (n?r>21/lVt + (nr)*l 

n=l 
(3l~?)(~j coth qj - 1) 

(64) 

The function ,$j(pj,r) increases monotonically 
with pj; hence the presence of the chemical 
reaction will accelerate the approach to the 
steady state; the characteristic species that 
is slowest in approaching the steady state is 
the equilibrium species B1. Equation (64) is 
complex and a convenient close approxima- 
tion for it has been found that is far easier 
to use. It is 

= erf 47.57 + Ait (65) 

A comparison of this approximation with the 
correct equation is given in Table 1. Accord- 
ing to Eq. (65) the total concentration within 
the spherical particle will have reached 95’% 
of the total steady state concentration when 

T = (1.386)*/(7.5 + (p*) (66) 
Hence, 

(7.5 + (p2)T 3 2 

may be taken as a convenient criterion for 
the disappearance of significant transient 
effects. 
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TABLE 1 
THE TRANSIENCE FACTOR E AS A FUNCTIOK OF cp 

AND 7 IN COMPARISON WITH THE APPROXIMATION 

FORMULA 

0 

1 

5 

10 

20 

50 

100 

.OOOl 
,001 
.Ol 
.l 

1.0 

.OOOl 
,001 
.Ol 
.l 
.2 

.OOOl 
,001 
.Ol 
.02 
.l 

.OOOl 
,001 
.Ol 
.02 

.OoOOl 

.OOOl 

.OOl 
.Ol 

.000001 

.00001 

.OOOl 

.0003 

.OOl 

.000001 

.00001 

.OOOl 

.0003 

.0336 0.310 

.104 .097 
,309 ,302 
,772 .779 
.99997 .99989 

,035s .0329 
.1109 .1038 
.3288 .3204 
.7987 .8082 
.9330 .9344 

,070 .0644 
.2169 .2009 
.5954 .5798 
.7550 .7463 
.9888 .9893 

.1240 .I166 

.3729 .3552 

.8661 .8575 

.9644 .9619 

.0748 .0712 

.2324 .2249 

.6443 .6331 

.9960 .9957 

.0575 .0564 

.1806 .1768 

.5266 .5205 

.7844 .7798 

.9758 .9747 

.1137 .1125 

.3498 .3451 

.8448 .8427 

.9859 .9856 

IV. DISCUSSION AND SUMMARY 

The solution for the effect of intraparticle 
diffusion on the behavior of complex systems 
of first order reactions has been obtained, 
using the matrix Y, by transforming the 
system of molecular species into a system 
of characteristic species or “transference 
units.” This transformation has the effect 
of changing the highly coupled system of 
diffusion equations for the molecular species 
into a set of uncoupled, and therefore inde- 
pendent, diffusion equations for the charac- 
teristic species. The required transformation 

WE1 

can be determined from experimental data, 
since matrix Y is formed from the charac- 
teristic vectors of the matrix D-‘K+. For 
systems studied in the laboratory, the matrix 
Kt is determined from the equilibrium com- 
position and the location of the straight 
line reaction paths (which constitutes the 
matrix X+), and the rate of reaction of each 
characteristic species (which constitutes the 
matrix A+) [Wei and Prater (S)]. The 
characteristic vectors of the matrix D-‘Kt 
may then be computed [Wei and Prater (6)] 
using the measured values of the diffusivities 
[Weisz (IO)]. However, if the diffusivities 
are equal, the matrix Y is identical to the 
matrix X+; this greatly simplifies the 
computations. 

In part II of this paper, the method of 
analysis and the results obtained for a single 
particle will be applied to packed bed and 
stirred tank reactors. The study of these 
reactors is best made in terms of the straight 
line reaction paths, and consequently the 
rate constant matrix IL+ may be obtained 
rather easily. The question then arises as to 
whether or not the rate-constant matrix 
obtained is a diffusion-disguised rate-con- 
stant matrix. This may be determined by 
computing an upper limit for the maximum 
value of the characteristic value &JR2 of 
the matrix D-‘ICI. 

When the diffusivities of the various 
reactants are equal in value, the treatment of 
the systems for the steady state condition is 
greatly simplified, and the solution for the 
transient condition is obtained for systems 
of arbitrary complexity. The assumption of 
equal diffusivities is a good approximation 
for a large fraction of cases of interest since 
the diffusivity generally varies inversely 
as the square root of the molecular weight, 
and most first order or pseudo-first-order 
systems do not produce large changes in 
molecular weight except in reaction steps 
for which irreversibility is a good approxima- 
tion. Hence, except for sieve catalyst par- 
ticles in which the diffusivity of highly 
branched molecules may be sterically hin- 
dered and essentially reduced to zero, the 
solution obtained for equal diffusivity is, 
in most cases, a good approximation for the 
actual behavior of coupled systems of first 
order reactions. These solutions are certainly 
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useful for estimating the importance of dif- 
fusion effectIs in such reaction systems. 
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